Regional Applications

Bluelink Regional Modelling

Bluelink has provided for the development and deployment of two regional modelling systems: the Relocatable Ocean Atmosphere Model (ROAM) and a Regional Modelling and Prediction System (RMAPS), which is formerly known as CLAM.

Relocatable Ocean Atmosphere Model (ROAM)

The Relocatable Ocean and Atmospheric Model (ROAM) is a tactical tool, initially developed for the Royal Australian Navy, to improve prediction of sonar range in the ocean and radar in the atmosphere.

ROAM-1

Screen shot of the ROAM user interface.

Using an intuitive and accessible user interface (Fig. 1), ROAM enables an operator to configure an ocean, atmospheric, and/or wave model for any region around Australia to produce a hindcast, over any time period, of a three to seven day forecast.

Fremantle

Comparison of observed (black) and modelled (red) sea-level off Fremantle during an extreme event.

An example of comparisons between observed and predicted sea-level off Fremantle is shown in Fig. 2 for an case when Fremantle experienced the highest sea-level on record. The model results presented were produced soon after the event. The results show that the automatically configured model reproduces the key features of the circulation, including an interesting resonance after the peak in sea-level.

ROAM accesses information from the Bluelink operational ocean forecast system – OceanMAPS – and the Bureau of Meteorology`s operational numerical weather prediction system to initialse and force each forecast.

Regional Modelling and Prediction System

A Regional Modelling and Prediction System (RMAPS) has been developed using the same underpinning models as the operational BLUElink ocean forecast system, and the Bureau’s operational weather forecast system.

RMAPS is used to develop and test the next generation forecast tools – experimenting with advanced ocean data assimilation and ocean-atmosphere coupling.

Here you can view some RMAPS images, which are examples of analysed and predicted atmosphere and ocean states.

Selected Publications

Goni G., A. Mavume, A. Mehra, C. Sampson C. Lauer E. Chassignet G. Halliwell, I-I Lin, I. Ginis J. Knaff, K. Kang, M. M. Ali, M. DeMaria, P. A. Sandery, R. Lumpkin, S. Ramos-Buarque, F. Marks, J. Price, 2009. Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting, Oceanography 22:3, 190-197.

Herzfeld, M. (2006) An alternative coordinate system for solving finite difference ocean models. Ocean Modelling, 14, 174 – 196.

Herzfeld, M., Waring J. R. (2008) SHOC: Sparse Hydrodynamic Ocean Code UserÕs manual. CSIRO internal document. 128 pp.

O`Kane, T.J., Oke, P.R. and Sandery P.A., 2011. Predicting the East Australian Current. Ocean Modelling, 38, 251-266.

Sandery P. A. and T. J. O`Kane, 2012. Coupled initialization in an ocean-atmosphere tropical cyclone prediction system. The Quarterly Journal of the Royal Meteorological Society, accepted.

Sandery P.A., G. B. Brassington and J. Freeman, 2011: Adaptive Nonlinear Dynamical Initialisation. Journal of Geophysical Research, 116, C01021 DOI:10.1029/2010JC006260.

Sandery P. A., G. B. Brassington, A. Craig and T. Pugh, 2010. Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region, Monthly Weather Review. 138(6), 2074- 2091, DOI: 10.1175/2010MWR3101.1

Sandery P. A. and G. B. Brassington, 2008. Preliminary Evaluation of a Coupled Ocean-Atmosphere Prediction System. CAWCR Research Letters 1.

Sandery P. A. and G. B. Brassington, 2007. Upper ocean heat content in the Australian region and potential impacts on tropical cyclone intensification. BMRC Research Letters 8.

Walsh, K. E, P. A. Sandery, G. B. Brassington, B. Pak, M. Entel, C. Siegenthaler- LeDrian, J. Kepert and R. Darbyshire, 2009. Constraints on exchange coefficients in tropical cyclones at extreme wind speeds. Journal of Geophysical Research, 115 C09007, DOI:10.1029/2009JC005876.


Comments are closed.

Bluelink ocean forecasting Australia

Bluelink was established in 2001, as a partnership between CSIRO, Bureau of Meteorology, and the Royal Australian Navy, with the goal of developing an operational forecasting system for the global ocean circulation around Australia.

The Bluelink research team continues to develop forecasting capabilities for ocean circulation on scales ranging from global eddy-scales, regional shelf-scales and littoral beach-scales, for the benefit of the Australian community.

Recent Updates

Bluelink Data

To access Bluelink data click here.

Contacts