

Material Insight – Privacy-Preserving Supply Chain Data Propagation

Dilum Bandara, PhD Architecture and Analytics Platform Team CSIRO's Data61 Dilum.Bandara@csiro.au

Australia's National Science Agency

Use Case

- What % of the notebook is recycled?
- What % of that is recycled in NSW?
- Do these claims add up?

How are these questions answered today?

- Self-made claims
 - Greenwashing?
- Trusted 3rd-party claims
 - Annual audits
 - Doesn't reflect variability across time/batches
 - Lack independent verification

Certified by Recyclass

*35% pre-consumer origin

- Increasing demand for better transparency & accountability
 - Through provenance, chain of custody, & traceability

Blockchain is a Good Fit for Supply Chains

• Blockchains are good for multi-party business processes

- Maintaining business confidentiality when data on a blockchain?
 - 1. Data segregation
 - 2. Computations on encrypted data

Work with conventional technologies too

Essential Data vs Business Confidentiality

- Quantities
 - Mass, volume, ratios
- Recycle %
- Location
 - GPS, ZIP code, local government area
- Input/output transformation
 - Mechanical, chemical
- Identities
 - Organisations, individuals
- Batch #
- Date/time
- Material passport/composition

Recycle % =
$$\frac{w_m r_m + w_{pa} r_{pa} + w_{pl} r_{pl}}{w_m + w_{pa} + w_{pl}} \times 100$$

 $Mass \ balance = \\ w_m + w_{pa} + w_{pl} \approx w_n + w_l + w_r$

Data Segregation

- One step up & down focus at every step
- Shared access is undesirable
 - Suppliers shouldn't see outputs
 - Customers shouldn't see inputs
- Segregate inputs & outputs
 - E.g., pairwise blockchain ledgers
- Needs a "trusted" supply chain integrator to get a holistic view
 - Integrator calculates recycle % & checks mass balances

Computations on Encrypted Data

- Homomorphic Encryption (HE)
 - Computations on encrypted data & produce encrypted results
 - Addition & multiplication of encrypted & plaintext data
 - Different keys to encrypt & decrypt data after computation
- Recycle % calculation
 - Suppliers/manufacturer publish encrypted masses & plaintext recycle %s
 - Use HE to calculate

$$Recycle \% = \frac{w_m r_m + w_{pa} r_{pa} + w_{pl} r_{pl}}{w_m + w_{pa} + w_{pl}} \times 100$$

- HE can't divide, so either publish encrypted $1/(w_m+w_{pa}+w_{pl})$ or use encrypted mass ratios

 W_m, W_{pa}, W_{pl} r_m, r_{pa}, r_{pl}

Computations on Encrypted Data (Cont.)

- Mass-balance check
 - Suppliers/manufacturer publish encrypted masses
 - Use HE to calculate & compare results

Mass balance = $w_m + w_{pa} + w_{pl} \approx w_n + w_l + w_r$

- Caveats
 - Computationally expensive
 - Impractical to compute within a smart contract
 - Oracles (i.e., trusted 3rd-parties) can compute off-chain using encrypted data & report results
 - Computation can be performed infrequently
 - Cryptographic key management complexity
 - Nontrivial HE configuration

