

Are Biodegradable Plastics the Solution to Plastic Pollution?

- Definition
- Waste hierarchy
- Limitations
- Why Biodegradables
- Green washing
- R&D at CSIRO

Ending Plastic Waste Symposium 2023 Pete Cass, PhD| CSIRO Manufacturing

What are Biodegradable Plastics?

Biodegradable Plastics as a Waste Management Strategy

Non-degradable single use plastics may be substituted for compostable plastics for certain applications

Recycle or Compost Option?

Limitations of Biodegradable Plastic

Consideration for using Biodegradable Plastics

- Reduce environmental footprint
- Increased consumer demand
- Evolving legislation for single-use plastic bans

Best Argument for Biodegradable Packaging

• Even if waste collection, sorting, and recycling were significantly improved, waste management will always be problematic

- Littering
- Negligence
- Incidental exposure
- Illegal dumping

Further Challenges for Biodegradable Plastics

• Poor Performance of Compostable Plastics using Citizen Science in the UK

Purkiss et. al. The Big Compost Experiment...., Frontiers in Sustainability, 3, 2022, 1-18

- Home compost study using 9,701 citizens
- 60% of certified home compostable did not meet performance targets
- Concluded that compostable plastics are not effecti

Why?

- Packaging is engineered to maximise mechanical performance limited to an ideal compost environment
 - Temperature, airflow, nutrients, moisture, microbe loading e.t.c.
 - Changes to certification targets may be necessary?

Value Proposition

BIOPLASTICS

Our Focus

Consumer choices...

Green washing – value proposition, misconception, or deception?

1. Oxo-degradable

- Disintegrates
- ✓ Reduced Animal Threat
- Persistent microplastics
- 🗵 Nonrecyclable

- 2. Non-degradable Bioplastic
- ☑ Uses less petrochemicals
- 🗹 Recyclable
- Non-degradable, environmental pollution

3. Uncontrolled 'Green' Plastics

Petrochemical blends – polyethylene + PLA or starch

- Uses less petrochemicals
- Carbon capture (if non-degradable)
- Problematic recycling
- Non-degradable, environmental pollution

Unverified Compostable Plastic -Excessive degradation period?

- 🗵 Environmental/animal hazard
- Accumulates in compost bin
- Produces methane in landfill

...are biodegradable plastics the solution to plastic pollution?

- Depends on value proposition and tolerance to limitations
- Only recommended for certain applications (see APCO)
- Technology is evolving and essential to address limitations

R&D Needs and Challenges

- Degradation rate and Mechanical Performance
- Recycling (Upcycling)
- Oxygen/moisture barrier performance
- Clear end-of-life Labelling for Consumers
- Banning green washed products

.....Learn More

R&D Activities at CSIRO

- Biodegradable composites to improve mechanical properties
 - nanocellulose incorporation into biodegradable polyesters
 - Kingshuk Dahli, PhD student RMIT
- Assisting start-up Uluu with their PHA polymers
 - materials evaluation
 - material processing

R&D Activities at CSIRO

 Enzyme incorporation into polyesters for enhanced degradation rates -> thicker, stronger home compostable plastics

- Contract R&D for Enzide Technologies[™] (form. Earthpak)
- Enzyme engineering for targeted activity and thermal stability (Biocatalysis and Synthetic Biology Team)
- MOFs enzyme encapsulation technology (Licence from CSIRO)

Thank you

CSIRO Manufacturing

Dr. Pete Cass Principal Research Scientist Polymer Interfaces and Composites Team

t +61 3 9545 2428

e pete.cass@csiro.au

w www.csiro.au/manufacturing

CSIRO Acknowledgement

Dr Parveen Sangwan Dr Colin Scott Dr Hafna Ahmed Mr Nigel French Mr Kingshuk Dhali (RMIT) Mr Asitha Balachandra

Australia's National Science Agency

extra slides

Biodegradable Plastics Classification Based on Degradation Environment

	Application	Tomonoratura	<u>Relative</u>	<u>Microbial</u>	Lh droh si s	Droduct
	<u>Application</u>	Temperature	Degradation Rate	wineralisation	Hydrolysis	Product
1	Ox0-degradable	ambient	Variable	some	via catalysis	micro plastic + CO ₂ + H ₂ O
	Industrial Compostable	60°C	Fast	Yes	Yes	$CO_2 + H_2O$
	Home Compostable	ambient	Moderate	Yes	Yes	$CO_2 + H_2O$
	Biodegradable - soil	ambient	Slow	yes–moderate	Yes	$CO_2 + H_2O$
	Biodegradable - marine	ambient	V. Slow	yes–slowly	Yes	$CO_2 + H_2O$
	Biodegradable - water	ambient	V. Slow	yes-slowly	Yes	$CO_2 + H_2O$

Mechanical performance

Oxo-biodegradable films e.g., oxo-polyethylene

Contains 1-2% Mn or Fe salts which catalyse chain scission

Microbial biodegradation to CO₂

Compostable Polyester Films

Industrial @ >60°C, e.g. PLA Home @ <30°C, e.g. all other biodegradable plastics (excluding PLA)

Compostable Polyester Films

Compostable Polyester Films

Certification period for Home Compost