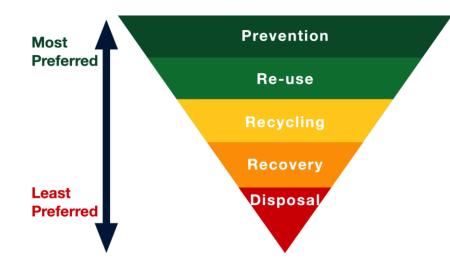
The Next Generation of Biodegradable Plastics Ending Plastic Waste Symposium 2024 Dr Pete Cass

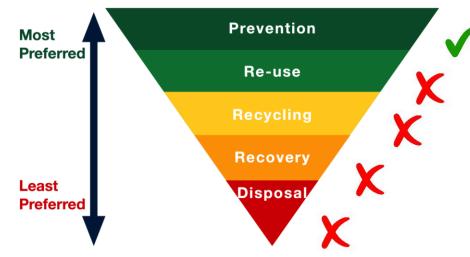
R


Plastic without Pollution

Options for Single Use Plastic End of Life?

Value Proposition

- Using plastic waste as a valuable resource
- Conserving petroleum
- Reduction of green house gases



Options for Single Use Plastic End of Life?

Value Proposition

Preventing Plastic Pollution

- Persistent plastic pollution
- Microplastics
- Animal and human health

Waste Management always will be ineffective at preventing plastic pollution

Biodegradation

Compostable Materials

Why is there a marginal uptake of biodegradable plastics?

High Price

Mechanical Strength

Permeability

Biodegradation rate

Enzide Technologies

The next generation of biodegradable plastics

Enzyme Additives for accelerated biodegradation of bioplastics

Enzide enables an expanding new range of biodegradable plastic products

- Thicker stronger bioplastics -> rigid plastics
- Improved mechanical performance of flexible plastics
- Degradation in a range of real environments
- Improved barrier properties

The next generation of biodegradable plastics

Enzide enhanced bioplastics

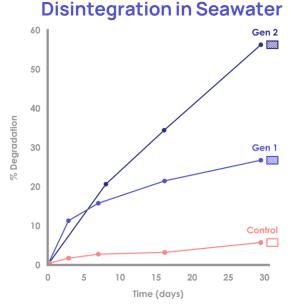
Rapid home compost degradation

Escape confinement

Enzymes disintegrate plastic fast at end of life

Mineralisation by microbes

No pollution, No microplastics


Enzyme additive melt processed into commodity bioplastics to accelerate their degradation

Enzide's Masterbatch Additive

enzide

Enzide's Performance

Additive Thermal Stability

Fast Degradation

- 20x disintegration rate
- Most commercial bioplastics
- Seawater, freshwater and home compost

High Thermal Stability

- A robust product = quality assurance
- Enables re-grinding
- Multiple manufacturing entry points
 - Compounding Moulding

Ongoing activities

Research & Development

Enzyme engineering

Performance improvement with multiple bioplastics Fermentation optimization

Additive development

Thermal protection, dispersion, microenvironment manipulation

Product development with partners

Improved flexible films and packaging Rigid packaging and utensils Agriculture and aquaculture

University R&D

RMIT Monash University

enzide

Partnerships

Australian Government

Department of Industry, Science and Resources

spi-g-re

Acknowledgement

CSIRO Manufacturing & CSIRO Environment Dr Colin Scott, Dr Hafna Ahmed, Dr Lygie Esquirol

Thank you

For further information please contact: Dr Pete Cass - Chief Scientist E: pete.cass@enzidetech.com