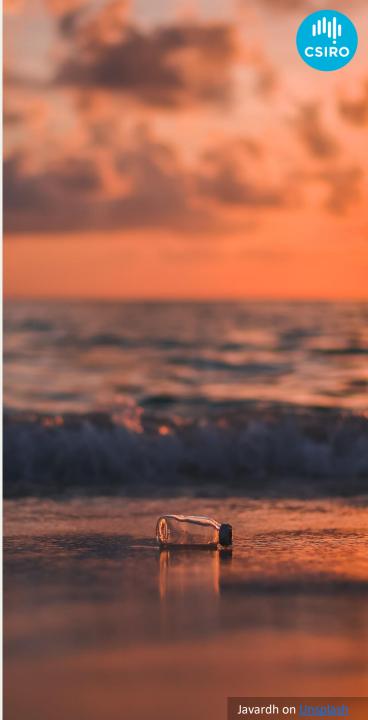
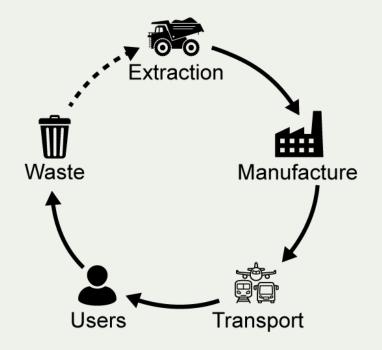
Acknowledgement of country

I wish to acknowledge the Traditional Custodians and their Ancestors of the lands and waters across Australia on whose unceded lands I am living, studying and working. I respectfully acknowledge their Ancestors and Elders, past and present.



Life cycle assessment (LCA) and its roles in the plastic industry


Ending Plastic Waste Symposium 2024

7th August 2024, Melbourne

Cao Ngọc Tú Xayachak (Tú)

Life cycle of plastics

GGJJ

Life cycle assessments (LCAs) are comprehensive environmental evaluations that offer holistic and quantitative assessment of a product's environmental performance.

- EPD Australia 2024

Material selection, waste management options, trade-off analysis

2 Supply chain management

Identify key contributors to emissions and wastes

3 R&D + Product development

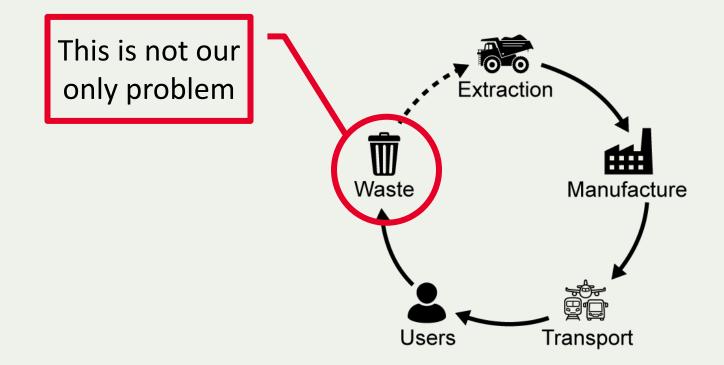
New plastic-alternative materials (worth??)

4 Marketing & sales

Sustainability is a competitive edge Enable good practices to be recognised Access to global market

5 The story we tell matter

The plastic problem is more than just waste management

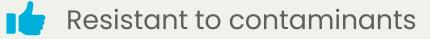

WHY

LCA MATTERS IN THE PLASTIC SECTOR

5 The story we tell matter

The plastic problem is more than just waste management

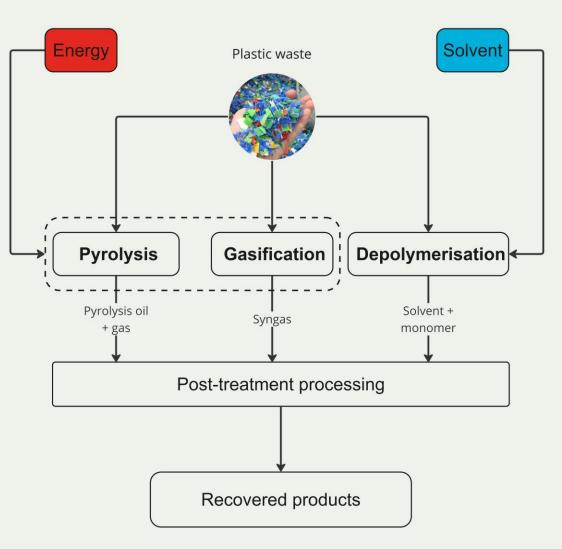
We can't recycle our way to sustainability


LCA research at

CSIRO AND RMIT

A life cycle inventory **database** for **chemical recycling** of plastic waste

Pyrolysis, gasification, and depolymerisation


A life cycle inventory **database** for **chemical recycling** of plastic waste

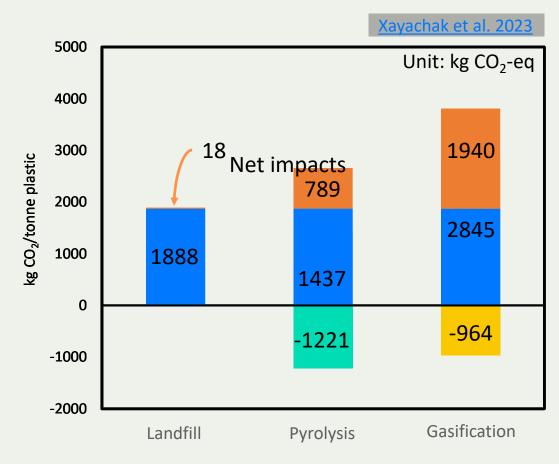
Energy and chemical solvent

Goals:

- Life cycle assessment of chemical recycling
- Editable, centralised database for future studies

A life cycle inventory database for chemical recycling of plastic waste

100 90 Lab plastics ≠ real-world plastics 80 ^oyrolysis oil yield (wt.%) 70 Lab plastics (Real plastics (60 50 No contaminants ✤ Water 40 No other polymers ✤ Oil residue No additives * PVC 30 → Product yield: >80% \rightarrow Product yield: 22-83% 22-83% product yield 20 many samples <50% 10 0 Key data categories 350 400 450 500 550 600 650 Temperature (°C) Electricity & gas Emissions (CO₂, SO₂, NO_x, etc.) Solvents (depolymerisation) Xayachak et al. 2022


- Nitrogen (pyrolysis)
- Steam (gasification)

- Solid waste
- Wastewater

A life cycle inventory **database** for **chemical recycling** of plastic waste

Comparative life cycle assessment

- Landfill vs pyrolysis vs gasification
- Baseline impacts: **1870 kg CO₂-eq**/tonne waste
- Add-on impacts: waste management
- Key contributors:
 - Energy (pyrolysis & gasification)Steam (gasification)
 - Crediting:
 - Monomer recovery (pyrolysis)
 - Aromatic recovery (gasification)

Other impacts (acidification potential, fossil fuel depletion potential, water use, etc.) \rightarrow check linked publications

A life cycle inventory **database** for **chemical recycling** of plastic waste

Expanded polystyrene (EPS) pontoons

White spill:

- ✤ 300+ flood-scattered pontoons
- Remote beaches
- ✤ Whole → bulky
- ✤ Breakdown → hazards

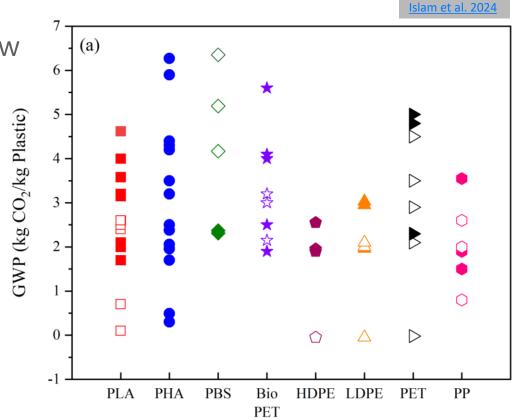
Inform local government

<section-header><section-header>

LCA research at

CSIRO AND RMIT

A life cycle inventory **database** for **chemical recycling** of plastic waste


Pyrolysis, gasification, and depolymerisation

Life cycle assessment study of **bioplastics** in the context of Australia's circular economy

Life cycle assessment study of **bioplastics** in the context of Australia's circular economy

- Environmental impacts depend on the source of raw materials
- Low: climate change potential & fossil fuel depletion potential
- High: water & land use + ammonia emissions
- Fossil-based vs bio-based plastics (Fair???)
- Life cycle assessment for PLA made from sugarcane, algae, and other sources

Critiques

LCA

Current problems and research gaps in

1 Microplastics and plastic debris

No methodology and data for assessing their impacts

2 PFAS

LCA has limited data for ecotoxicity of PFAS \rightarrow Mostly omitted

3 Site independence

LCA emphasises global and regional effects over local ones Many standards and regulations are not properly **regionalised**

4 Limited sensitivity analysis

Not enough primary data

The Team

RMIT

S

Water: Effective Technologies & **Tools Research** Centre (WETT)

A unique multidisciplinary approach to water research, drawing on expertise in chemical and environmental engineering, environmental chemistry and microbiology,

Breaking Down Plastic Waste: Assessing the Environmental Impact of Chemical Recycling Processes

S RMIT

10

Mo

pol en it a

Thank you for listening Questions and feedback welcomed