

Biodegradable composite films with antibacterial properties for packaging applications

Dr. Rajkamal Balu (RMIT University)

### Acknowledgement

Master's Student Research Staff Supervisors

: Mr. Zhibo Zhao

: Dr. Sheeana Gangadoo

: Prof. Namita Roy Choudhury Prof. Naba Kumar Dutta

Ending Plastic Waste Symposium Tuesday 6 August – Wednesday 7 August 2024









**Bioplastics used for food packaging** 

| Polymers                                     | Advantages for food packaging                                                                                                                                       | Disadvantages for food packaging                                                                                                                                                                     |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polylactic acid (PLA)                        | 100% biodegradable.<br>FDA approved for food contact.<br>Bio-compostable.<br>Transparent.<br>Good processability.<br>Renewable resources (plant sugars).            | Rigid & brittle.<br>Low heat resistance.<br>Slow degradation rate.<br>Moderate permeability to oxygen & moisture.<br>Not suitable for long term food storage.<br>No inherent antibacterial property. |
| Polybutylene adipate<br>terephthalate (PBAT) | 100% biodegradable.<br>FDA approved for food contact.<br>Bio-compostable.<br>Transparent.<br>Good processability.<br>Flexible & tough.<br>Fast degradation rate.    | Fossil fuel resources.<br>Relatively more expensive.<br>Produces microplastics.<br>Good heat resistance.<br>High permeability to oxygen & moisture.<br>No inherent antibacterial property.           |
| PLA/PBAT blends                              | 70% PLA optimal for strength & processability (20 °C).<br>40% of PLA good for chilled (4 °C) food packaging.<br>20% of PLA good for frozen (-25 °C) food packaging. | Poor antibacterial performance.<br>High permeability to oxygen & moisture.                                                                                                                           |



## **Research Rationale**

- > Property limitations of PLA/PBAT blend films can be overcome by incorporating functional filler materials.
- Zinc oxide (ZnO) nanoparticles as filler has shown antimicrobial activity and improved mechanical strength, barrier properties, and thermal and shelf-life stability in PLA/PBAT blend films.
- Tetrapod ZnO (T-ZnO) microparticles have been recently applied in many advanced composite systems: linkers for joining polymers, self-healing/antifouling/antireflective coatings, vulcanizer for elastomers, ...
- > Cell toxic potency of T-ZnO whisker is found to be significantly lower than that of spherical ZnO nanoparticles.

# Objective

- > To develop PLA/PBAT/T-ZnO whisker composite films for cold food packaging application.
- > To study the effect of T-ZnO whisker content on the physicochemical properties of developed composite.

Materials Letters 2024, 372, 136960; Food Chemistry 2023, 405, 134798; Food Packaging and Shelf Life 2019, 21, 100327; Materials Today 2018, 21, 631-651.



**Fabrication of composite films** 

- Polymer blend: PLA/PBAT (30/70)
- Compatibilizer: Joncryl ADR-4380 chain extender
- Filler: Tetrapod ZnO microparticles
- Surface treatment: Silane



#### Schematic of surface modification of T-ZnO whisker



✓ Twin-screw melt extrusion & granulation

Film blowing & characterization



SEM image of T-ZnO whisker



Film blowing and transparency pictures of fabricated composite films



Morphology and mechanical strength analysis



SEM images of the surface (top) and cross-sectional (bottom) morphology of fabricated composite films. Scale bar is 20  $\mu m.$ 



TD) of fabricated composite films



**Thermal analysis** 



TGA and DSC thermograms of fabricated composite films



**Rheological investigation** 



Rheology of composite melts measured as a function of angular frequency.



**Barrier properties and Antimicrobial efficiency investigation** 



Antimicrobial efficacy of fabricated composite films

bar—WVP) of fabricated composite films



## Conclusion

- ✓ Incorporation of T-ZnO whisker enhanced the crystallinity of PBAT/PLA films, whereas affected the optical properties.
- ✓ Composite with 1 wt.% T-ZnO whisker exhibited improved rheological and barrier properties.
- ✓ Composite with 3 and 7 wt.% T-ZnO whisker exhibited enhanced strength and antibacterial activity.
- ✓ The developed PBAT/PLA/T-ZnO whisker composite films can be used as potential antibacterial packaging material.

### **Research Outcome (Journal Article)**

1. Poly(butylene adipate-co-terephthalate)/Polylactic Acid/Tetrapod-Zinc Oxide Whisker Composite Films with Antibacterial Properties. *Polymers*, 2024; <u>https://doi.org/10.3390/polym16081039</u>.

