

Impact of Bioplastics on Environment from Its Production to End-of-life

A Comprehensive Life cycle Assessment study of Bioplastics: Benefits, Challenges, and Sustainability

Md Monjurul Islam^a, Tu Xayachak^a, Nawshad Haque^b, Deborah Lau^c, Muhammed Bhuiyan^a, Biplob Kumar Pramanik^a

^a School of Engineering, RMIT University, VIC 3001, Australia
 ^b CSIRO Mineral Resources, Clayton South, Melbourne, VIC 3169, Australia
 ^c CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia

Bioplastics, derived from renewable resources, offer a promising alternative to conventional plastics, but their environmental impact must be assessed from production to end-of-life to determine their sustainability.

Background

- To mitigate the plastic pollution, researchers have suggested bioplastics as an alternative.
- Bioplastics can be produced either from biobased resources or biodegradable or made through biological process or combination of the above.
- There are several advantages of bioplastics, such as-
 - reduces the pressure on fossil fuel.
 - biodegradable in short time under proper conditions.
 - reduce the emission of CO₂ and toxic substances.
 - secondary raw materials can be acquired from disposal for further use.
 - enhance microbial activity and thus positively affect the soil respiration.
- The global bioplastics production capacity is set to increase significantly from

EoL Options for Bioplastics and Their Consequences

around 2.23 million tonnes in 2022 to 6.3 million tonnes in 2027.

Figure 1: Definition of bioplastics and estimated global production of bioplastics till 2027.

Land and Water Consumption for Bioplastic Production

- The cultivation of crops for bioplastic production requires significant agricultural land, potentially leading to land use changes and competition with food production.
- Irrigation during biomass cultivation can result in high water consumption, raising concerns about water resource depletion.
- To globally replace annual plastic packaging with bioplastic it would require 61 million ha land and 388.8 billion m³ water.

Figure 3: Life cycle of bioplastics illustrating different EoL options and their consequences, such as production of CO₂ and GHG during recycling and environmental pollution may occur if bioplastic wastes are not managed properly.

Key Environmental Concerns

- Bioplastics can show higher GWP than petro-plastics due to emissions from land use changes, deforestation for feedstock cultivation, and energyintensive agricultural practices.
- Bioplastics can show higher GHG emissions than petro-plastics at end-of-life due to methane emissions from anaerobic landfill degradation and limited composting or recycling infrastructure.
- Acidification and eutrophication potential occurs due the consumption of chemicals during the cultivation of biomass and the degradation of bioplastics involves the release of organic acids and nutrients.

Figure 2: Adverse consumption of land and water during the cultivation of biomass to produce bioplastics

Figure 4: Comparison between bioplastics and conventional plastics in terms of (a) global warming potential (kgCO₂ eq/kg) (b) acidification (kgSO₂ eq/kg) and (c) eutrophication (kgPO₄ eq/kg). Filled markers and open markers indicate cradle-to-gate and cradle-to-grave studies, respectively.

ACKNOWLEDGEMENT

I would like to acknowledge CSIRO (EPW Mission) and RMIT
University for providing research scholarship for my PhD.
I would also like to acknowledge Dr. Aaron Thornton and Dr.
Sofia Chaudry, personnel from CSIRO, for their contribution.

FOR FURTHER INFORMATION

Md. Monjurul Islam

School of Engineering, RMIT University | Energy (Clayton), CSIRO <u>s3853695@student.rmit.edu.au</u> | <u>mdmonjurul.islam@csiro.au</u> **Dr. Biplob Pramanik**

Senior Lecturer | ARC DECRA Fellow, RMIT University <u>biplob.pramanik@rmit.edu.au</u>

REFERENCES

Islam, M., Xayachak, T., Haque, N., Lau, D., Bhuiyan, M. and Pramanik, B.K., 2024. Impact of Bioplastics on Environment from Its Production to End-of-Life. Process Safety and Environmental Protection.

Brizga, J., Hubacek, K. and Feng, K., 2020. The unintended side effects of bioplastics: carbon, land, and water footprints. One Earth, 3(1), pp.45-53.

Rosenboom, J.G., Langer, R. and Traverso, G., 2022. Bioplastics for a circular economy. Nature Reviews Materials, 7(2), pp.117-137.

