

A Definition for Fluid Viscosity

Viscosity = Shear Stress / Shear Rate

 $\mu = \tau / \gamma$

For Newtonian Fluids (at a given Temperature)

 μ = constant

For Non-Newtonian Fluids (at a given Temperature), the Viscosity is not constant, thus

 $\mu_{apparent} \neq constant, it is Shear Rate Dependent$

Note: For a Non-Newtonian Fluid we must refer to the *Apparent Viscosity* (at a specified *Shear Rate*).

Rheology & Texture

The Role of Shear in the Extrusion Cooking Process

If we rearrange our definition for *Viscosity*, then we obtain the following expression

$\tau = \mu_{\text{apparent}} \gamma$

Thus, for a given Formulation, at a given Total Moisture Content and Temperature, in the presence of a given Shear Rate (determined by the Screw Geometry and Screw Speed), an Effective Shear Stress is experienced within the Fluid, resulting in the Degradation (or "Cooking") of the Ingredients.

[Thus, in simplistic terms, it is the *Shear Stress* within the Fluid (which acts at the *Molecular Level*), that tells the Ingredients how to "break down", that is "how to cook"!]

"The Golden Rules of Extrusion Technology"		
Golden Rule # 2		
Energy Inputs		
E _{total} = E _{mechanical} + E _{convective} + E _{conductive}		
Total Energy Net Po Input Inpu	wer Latent Energy tt Input / Removal	Barrel Heat Transfer
where $E_{mechanical} = f [Rheology, Strain]$ $E_{convective} = f [Volatiles^* Injection / Removal] $ (Typically Steam) $E_{conductive} = f [Barrel Temperature]$		
Note : The Energy Inputs are not directly interchangeable!		

