

Replace **trial & error** with numerical simulation to save **time & money**

WHO ARE WE?

SCIENCES COMPUTERS CONSULTANTS edits and markets **numerical simulation software** dedicated to industrial processes.

In a context where raw materials and energies are becoming more and more expensive, reducing conventional methods «trials/errors» is a considerable argument.

Applications for packaging, compounding, pharmaceutical, aeronautic, automotive, nuclear, transportation, agro food

Optimizing Twin Screw Extrusion process with advanced simulation software

P6

An help decision making tool for TSE processes optimisation

- ♦ A 3D powerful software
- 100% dedicated to Twin Screw
- Compatible for any geometries
- Multi applications !

XimeX-TSE main focus

- Process higher effectiveness
- Easy control
 - User/super-user modes
 - Relevant languages
 - Adapted results
- Quantifying the mixing efficiency
 - Indeep analysis
 - Easy comparisons

The XimeX-TSE strategic position

The CFD software – Principles

- 3D Computational Fluids Dynamics
 - High calculation precision
 - Indeep physics analysis
 - Stokes-Navier Stokes
 - Transient model
 - Full parallel computation code
- Finite Elements Method (FEM)
 - Fast automatic meshing adaptation
 - Quick assembly of the twin screw
 - Dedicated approach for process engineer
 - Anisotropic mesh adaptation
 - Immerged mesh domain method
 - Suitable for any geometry

CONSULTANTS

- Immersion method
 - The CAD files
 - .stl
 - .step
 - ...

A screw generator can be used for self wiping éléments : no needs of CAD files anymore!

- Immersion method
 - Automatic meshing

SC-Consultants

- Immersion method
 - High accuracy
 - Automatic adaptation

XimeX Techno – no user meshing

- Faster
- Done once time
- No remeshing at each step

Classic software : a few <u>days</u>

CFD Advantages

- Reproducing any kind of geometries
- Providing high results accuracy
- Tracking particles for quantifying the process efficiency

Quantifying the mixing efficiency

• Unique results for reading the mixer mixing capabilities

Analysis function	Distributive mixing	Dispersive mixing	Mixing time
RTD Average	Х		Х
RTD Variance	Х		
Cumulated strain	Х		
Z coordinates	Х		
Cumulated heating		Х	
Fibres breakage		Х	
Cumulated dissipated energy		Х	
SME		Х	
Erosion		Х	
Local elongation		Х	
Cumulated vorticity		Х	
Time effe	ect Energy	v effect	

P16

Adapted data set up for optimization targets

VTS

- XimeX Techno full parallel
- High scalability OpenMPI

Practical – Material management

[Manage materials] Tab

- One tab to add and modify materials
- Various parameters :
- Thermal characteristics
- Rheology laws (8 available !)
- Thermo dependency included
- Kinetics laws and dependance

🚱 SCCLa	ib by SCC ×
File	faterials Analysis ?
🕑 🛍	Manage materials →
- 🐨 SCO	Clab
Material name	
Material profile	XimeX-Polymer - v1.0
Data group	[1/4] Thermal characteristics
	×
Density (kg/m3)	
Heat capacity (J/(kg.K))	
Conductivity (W/(m.K))	
Material name	
Material profile	XimeX-Polymer - v 1.0 🔹
Data group	[2/4] Behaviour law_thermal-sensitivity
Behaviour law	Newton
	$\eta = \eta_{\text{Cross}}$
Viscosity (Pa.s)	Carreau - rasuda Papanastasiou Bingham
Thermal dependancy term	Herchel-Bulkley Carreau - Yasuda
	LUNDI

Practical – CAO Integration

Fast modeling of the geometry - [Resources] Tab

- Direct integration of the CAD files ٠ Format available : .STL
- Or Screw element generator

Extruder	Coperion - Coperion_133	3	 Element name 			
	O CAD File		Element type	Positive KB/TKD 👻		
	Self-wiping		Length (mm)	0.000		
	Positive KB/TKD—					
	Leakage (mm)	1,330	Disks count	4		
	Lobs #	•	Staggering angle (°)	60		
			Twist angle (°)	0.0	WILL BOOM	
				AT A BOARD	AND AND A	
		Apply	Cancel			
				ATTACK -	KAREARE	
				AAAAAA	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
				AXXXXXXXXXXX	HE LEAST	L
					A A A A A A A A A A A A A A A A A A A	
				A A A A A A A A A A A A A A A A A A A	SAX XXX	
				WHAT'S T	NAVA AND AND AND AND AND AND AND AND AND AN	
					SC-Consulta	an

Practical – Process conditions

Only a few parameters for the process definition -[Simulation] – [Process] Tab

One tab to set all the process conditions parameters

- 1. Screw rotation speed
- 2. Material and additives selection
- 3. Flow rate + material feeding T°C

Easy control on a few set of parameters !

SC-Consultan

		ing System					
Project: -							
Extruder	Coperion - Coperion_1	33	Geometry	Coperion_Recep	otionCase		
Simulation	name Coperion_133mm	1					
older	D:\SCC_Lab2.4-Test	SIMU_XIMEX-TSE\					
Execution	Remeshing Process	2 Physical models	2 Numerical models	Particles	Results Log		
(1)	Shafts rotation speed (rpm)		300,00				
	Simulated revolution (revolution)		1,00 ().2000 (s)			
	Angular rotation / computing step	C	1,00 ().0006 (s) :360 In	crements		
	Results storage frequency (3D) /	computed increments	1 ().0006 (s) : 360 re	sults		
	Feeding zone						
$\binom{2}{2}$	Product Properties Core						
G	Reception Case	•	A 4	dditive	% »	5	
	Modified:12/03/2024 lratte@ Law=Newton	pegase3		Ø % mass	© % volume		
\bigcirc		● Flow rate (kg/h)	Flow rate /kr	(h)	4 000 000		
S		O Pressure (bar)	now rate (Kg	···/	+ 000,000		
[Initial conditions						
	Product initial temperature (°C)		20				
	Exit zone						
		 Flow rate (kg/h) Pressure (bar) 	Pressure (ba	r)	0.0		
		Check Sav	re Generat	e			
		Con	erion - Coperion 133	Coperion	133mm	5	

- Material Flow computation
- Velocity, shear, pressure, temperature...
- Particles results for mixing efficiency quantification
 - Based on the CFD layer, particles are launched for flowing on the material path
 - Specific properties are then analysed
 - Elongation, erosion, self heating, local elongation, cumulated energies...

The CFD Results

Shear rate CFD result

- Local analysis focused
- High precision on distribution
- Increment 90
 - Average shear rate : 153,1 s⁻¹
 - Max shear rate : 1500 s⁻¹
- Increment 360
 - Average shear rate : 152,9 s⁻¹
 - Max shear rate : 1500 s⁻¹

CFD 1D – Sensors results - Shear rate

SC-Consultants

CFD 1D global results

- A process overview
- Average results as a function of time

The Particles Results

Particles traking 3D – Cumulated strain

-

• Time 5s (Incr 9 000)

Average heat : 139 °C

Max heat : 300 °C

SC-Consultants

XimeX-TSE Packages

CONSULTANTS

XimeX-TSE Conclusion

- Highlighting process/material behaviour
- Quantifying the mixing effiency
- High precision on 3D and 1D results
- Advanced numerical technology
- Tool dedicated for process analysis by process engineer
- Easy interface control

It's always worth playing with numerical simulation To support the process optimization

- For your process optimizations support, SC-Consultants does propose
 - Studies/consulting
 - Training
 - License (temporary/permanent)

- https://www.scconsultants.com
- https://support.scconsultants.com

https://www.cemef.minesparis.psl.eu/

- Classic licensing models
 - Permanent, temporary, leasing...
 - Contact SCC or our agents :

Plastics Training & Consultancy Sabine Schneider https://www.sbs-plastics.be

https://www.cadmen.com

https://akasha.co.in/

Micro-Composite, Inc. Particle Functional Coating & Dispersion Functional Composite Materials

info@u-composite.com

http://www.itsjp.co.jp/index.html

For any questions, feel free to contact our team

Sciences Computers Consultants

(Headquarters) 10 rue du plateau des Glières F-42000 Saint Etienne +33 (0)4 77 49 75 80 <u>scc@scconsultants.com</u>

https://www.scconsultants.com