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Chewing is essential for digestion, fragmenting food and forming a cohesive bolus suitable for
swallowing. In our earlier work, we introduced a non-destructive, image-based approach using Mask
Region-based Convolutional Neural Networks (Mask R-CNN) to analyze bolus formation dynamics. By
benchmarking backbone architectures, we showed that ResNet101 achieved the most reliable
segmentation of bolus particles, improving upon traditional particle size distribution methods and
establishing a computational foundation for non-invasive chewing analysis.

In this study, we extend the framework to address a major bottleneck: limited annotated training data. We
combined manually labelled key frames with pseudo-labelled intermediate frames generated via temporal
propagation, thereby expanding dataset size without proportional manual effort. This hybrid approach
allowed the model to learn from both accurate annotations and temporally dense pseudo labels. Training
was performed with early stopping to prevent overfitting, and evaluation was conducted on an
independent manually annotated validation set.

Results showed that pseudo-labelled augmentation improved overall recall and temporal robustness yet
introduced noise that reduced precision for minority classes. Compared with the baseline trained solely on
manual labels, the augmented model better captured large-scale bolus transitions but remained challenged
by fine-grained minority structures. These findings highlight both the potential and the pitfalls of pseudo-
labelling in biomedical and food imaging applications.

This work creates a narrative from methodological innovation in bolus segmentation to practical strategies
for scalable data preparation. It lays the groundwork for real-time segmentation systems in robotic
chewing simulators and personalized food design, advancing the application of deep learning in food oral
processing research.




