Important notes:

Do NOT write outside the grey boxes. Any text or images outside the boxes will be deleted.

Do **NOT** alter the structure of this form. Simply enter your information into the boxes. The form will be automatically processed – if you alter its structure your submission will not be processed correctly.

Do not include keywords – you can add them when you submit the abstract online.

Title:

Gelation Dynamics of Fractionated Australian Pulse Proteins

Authors & affiliations:

Name and surname Institution/ Department, University, Country

Yurina Nam Department of Chemical and Biological Engineering, Monash University, Australia

Sushil Dhital Department of Chemical and Biological Engineering, Monash University, Australia

Department of Chemical and Biological Engineering, Monash University, Australia

Abstract: (Your abstract must use **Normal style** and must fit in this box. Your abstract should be no longer than 300 words. The box will 'expand' over 2 pages as you add text into it.)

Preparation of Your Abstract

- 1. The title should be as brief as possible but long enough to indicate clearly the nature of the study. Capitalise the first letter of the first word ONLY (place names excluded). No full stop at the end.
- 2. Abstracts should state briefly and clearly the purpose, methods, results and conclusions of the work.

Introduction: Clearly state the purpose of the abstract

Methods: Describe your selection of observations or experimental subjects clearly

Results: Present your results in a logical sequence

Discussion: Emphasize new and important aspects of the study and conclusions that are drawn from them

Dry fractionation to extract plant proteins is a sustainable alternative to the resource-intensive traditional wet fractionation, as it uses minimal water and requires no post stabilization steps. However, dry fractionation has limitations, where the protein purity is inferior compared to wet extracted protein isolates. As a result, the gelation dynamics of dry fractionated protein concentrates and dry fractionated protein isolates differ, however, these differences are not completely understood. We investigate the gelation dynamics of two different Australian pulse proteins (Faba and Mung bean) which have different legumin/vicilin protein ratios, using a combination of Rheometry and Rapid Visco Analyzer. We find that wet fractionated isolates undergo gelation at a lower temperature compared to their dry fractionated counterparts. Furthermore, comparison of elastic moduli obtained using small amplitude oscillatory shear tests reveal that the gels prepared using wet fractionated isolates are stronger and firmer compared to gels prepared from dry fractionated concentrates. Amongst Faba and Mung bean, Faba bean with a greater legumin content forms stronger gels with lower gelation temperature, possibly owing to the different hydrophilicity of the amino acid compositions. We summarise our findings in a concentration-temperature master curve, which can help to synthesise plant protein gels of desired functional properties.