<table>
<thead>
<tr>
<th>Name</th>
<th>Organisation</th>
<th>Abstract title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Romanofsky</td>
<td>NASA Glenn Research Center</td>
<td>Superconducting Sensors for Microwave and Optical Photon-Starved Communications</td>
<td>Wed-Pl-01</td>
</tr>
<tr>
<td>Wed-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. SQUIDs, SQIFs and SQUID Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dag Winkler</td>
<td>Chalmers University of Technology</td>
<td>High-Tc SQUIDs for biomedical applications</td>
<td>Wed-O1-02</td>
</tr>
<tr>
<td>Shane Keenan</td>
<td>CSIRO</td>
<td>Operation of HTS SQIF arrays on a cryo-cooler</td>
<td>Wed-O1-01</td>
</tr>
<tr>
<td>Bob Fagaly</td>
<td>Honeywell, Inc</td>
<td>Applications of Biomagnetism</td>
<td>Wed-O1-03</td>
</tr>
<tr>
<td>Paul Sowman</td>
<td>Macquarie University</td>
<td>Using SQUIDs to conduct functional brain imaging in pre-school children</td>
<td>Wed-O1-03</td>
</tr>
<tr>
<td>Sobhan Sepehri</td>
<td>Chalmers University of Technology</td>
<td>Ultra-Sensitive Magnetic Bioassay Using a High-TC SQUID Gradiometer</td>
<td>Wed-O1-04</td>
</tr>
<tr>
<td>saburo tanaka</td>
<td>Toyohashi University of Technology</td>
<td>Nanoparticle Imaging by MPI Technique</td>
<td>Wed-O1-05</td>
</tr>
<tr>
<td>Michael Paulsen</td>
<td>PTB Berlin</td>
<td>Development of a Beta Spectrometry Setup using Metallic Magnetic Calorimeters</td>
<td>Wed-O1-06</td>
</tr>
<tr>
<td>Wed-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Other Novel Devices and Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Stuber</td>
<td>University of Melbourne</td>
<td>Possible Proximity Effect in a Nanoscale-size Superconductor – Semiconductor Ring Device</td>
<td>Wed-O2-01</td>
</tr>
<tr>
<td>Juan Trastoy</td>
<td>Unite Mixte de Physique CNRS/Thales</td>
<td>Towards tunable high-TC Josephson junctions</td>
<td>Wed-O2-02</td>
</tr>
<tr>
<td>Antony Jones</td>
<td>University of Wollongong and CSIRO Manufacturing</td>
<td>Ratchet Effect in Superconductors for Novel Devices</td>
<td>Wed-O2-04</td>
</tr>
<tr>
<td>Vijaya Srinivasu Vallabhapurapu</td>
<td>University of South Africa, Johannesburg, South Africa</td>
<td>Low Field Tunable Microwave Absorption in Iron Pnictides</td>
<td>Wed-O2-05</td>
</tr>
<tr>
<td>Dimitrios Georgakopoulos</td>
<td>National Measurement Institute</td>
<td>Ac voltage measurement and harmonic analysis based on a Josephson Arbitrary Waveform Synthesizer</td>
<td>Wed-O2-06</td>
</tr>
<tr>
<td>Wed-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Superconductor Device Fabrication/Processing/Scale-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniel Creedon</td>
<td>University of Melbourne</td>
<td>Irradiation induced modification of superconductivity in boron doped diamond</td>
<td>Wed-O3-01</td>
</tr>
<tr>
<td>Martin Cyster</td>
<td>RMIT University</td>
<td>Simulation of Al/AlOx/Al Josephson junction fabrication with iterative molecular dynamics</td>
<td>Wed-O3-02</td>
</tr>
<tr>
<td>zhi li</td>
<td>UNIVERSITY OF WOLLONGONG</td>
<td>High-Temperature Superconductivity in Atomically Thin FeSe Films</td>
<td>Wed-O3-03</td>
</tr>
<tr>
<td>Wenbin Qiu</td>
<td>Institute for Superconducting and Electronic Materials, University of Wollongong</td>
<td>Interface Structure of FeSe Thin Film on CaF$_2$ Substrate and the Influence on the Superconducting Performance</td>
<td>Wed-O3-04</td>
</tr>
<tr>
<td>Wendy Purches</td>
<td>CSIRO</td>
<td>The scale up of high temperature YBCO step edge Josephson junctions</td>
<td>Wed-O3-05</td>
</tr>
<tr>
<td>Antonio D’Addabbo</td>
<td>Istituto Nazionale di Fisica Nucleare (INFN)</td>
<td>An active noise cancellation technique for Pulse Tube cryo-coolers</td>
<td>Wed-O3-06</td>
</tr>
<tr>
<td>Name</td>
<td>Organisation</td>
<td>Abstract title</td>
<td>Code</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Robert Hadfield</td>
<td>University of Glasgow</td>
<td>Infrared single-photon detection with superconducting nanowires</td>
<td>Th-PI-02</td>
</tr>
<tr>
<td>Th-O1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Quantum Information Processing and Quantum Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan Herrmann</td>
<td>National Measurement Institute</td>
<td>Quantum physics in one dimension and the fate of the dual Josephson effect</td>
<td>Th-O1-01 (invite)</td>
</tr>
<tr>
<td>Tim Duty</td>
<td>University of New South Wales</td>
<td>Quantum physics in one dimension and the fate of the dual Josephson effect</td>
<td>Th-O1-02 (invite)</td>
</tr>
<tr>
<td>Jared Cole</td>
<td>RMIT University</td>
<td>Electron transport inside Josephson junctions: moving beyond the cartoon picture of barrier tunnelling</td>
<td>Th-O1-03</td>
</tr>
<tr>
<td>Arkady Fedorov</td>
<td>University of Queensland</td>
<td>Using superconducting circuits to probe quantum randomness</td>
<td>Th-O1-04</td>
</tr>
<tr>
<td>Shuichi Nagasawa</td>
<td>National Institute of Advanced Industrial Science and Technology (AIST)</td>
<td>Fabrication process for Nb-based quantum annealing devices</td>
<td>Th-O1-05</td>
</tr>
<tr>
<td>Th-O2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Superconductor Photon Detectors, e.g. SSPD, TES, STJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lixing You</td>
<td>Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS)</td>
<td>Progress on SNSPDs at CENSE, CAS</td>
<td>Th-O2-01 (invite)</td>
</tr>
<tr>
<td>Yong-Hamb Kim</td>
<td>tba</td>
<td></td>
<td>Th-O2-02 (invite)</td>
</tr>
<tr>
<td>Flavio Gatti</td>
<td>University of Genova</td>
<td>Development and characterization of single photon TES detectors for investigating rare decay in the UV band</td>
<td>Th-O2-03</td>
</tr>
<tr>
<td>Xiaolong Hu</td>
<td>Tianjin University</td>
<td>Two mechanisms of device timing jitter of superconducting nanowire single-photon detectors</td>
<td>Th-O2-04</td>
</tr>
<tr>
<td>Masataka Ohkubo</td>
<td>AIST</td>
<td>Superconductor detectors overcoming the limits in conventional analytical instruments</td>
<td>Th-O2-05</td>
</tr>
<tr>
<td>Th-O3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Superconductor Electronics for Microwave, THz and Communications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huabing Wang</td>
<td>Nanjing University</td>
<td>High temperature superconducting terahertz emitters and detectors</td>
<td>Th-O3-01 (invite)</td>
</tr>
<tr>
<td>Jia Du</td>
<td>CSIRO</td>
<td>Recent progress of developing HTS high-frequency sensors and detectors for wireless communications and sensing applications in CSIRORecent progress of developing HTS high-frequency sensors and detectors for wireless communications and sensing applications in CSIRO</td>
<td>Th-O3-02 (invite)</td>
</tr>
<tr>
<td>Xiang Gao</td>
<td>CSIRO</td>
<td>Novel Antenna-Coupled HTS Josephson THz Mixer of High Conversion Gain and Low Noise</td>
<td>Th-O3-03</td>
</tr>
<tr>
<td>Eldad Holdengreber</td>
<td>Ariel University</td>
<td>THz Spatial Spectral Illumination Radar Scanning Method Based on HTSC JJs Detection</td>
<td>Th-O3-04</td>
</tr>
<tr>
<td>Name</td>
<td>Organisation</td>
<td>Abstract title</td>
<td>Code</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Alexander Zorin</td>
<td>Physikalisch-Technische Bundesanstalt, Braunschweig, Germany</td>
<td>Microwave quantum circuits based on non centrosymmetric Josephson metamaterial</td>
<td>Th-O3-05</td>
</tr>
<tr>
<td>Ting Zhang</td>
<td>University of Technology Sydney</td>
<td>A Ka-band HTS MMIC Josephson Mixer with High Conversion Efficiency</td>
<td>Th-O3-06</td>
</tr>
<tr>
<td>Friday</td>
<td>Fri-O1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiroyuki Shibata</td>
<td>Kitami Institute of Technology</td>
<td>Superconducting nanostrip photon detector using various materials</td>
<td>Fri-O1-02</td>
</tr>
<tr>
<td>Jian Chen</td>
<td>Nanjing University (NJU)</td>
<td>Progress in superconducting high-frequency detectors at RISE, NJU</td>
<td>Fri-O1-01</td>
</tr>
<tr>
<td>Go Fujii</td>
<td>National Institute of Advanced Industrial Science and Technology</td>
<td>Fabrication of 4096-pixel superconducting-tunnel-junction array X-ray detectors toward high throughput SEM-EDS analyses</td>
<td>Fri-O1-03</td>
</tr>
<tr>
<td>Biabbing Jin</td>
<td>Nanjing University</td>
<td>Polarization-Sensitive/Insensitive and high efficient Superconducting Nanowire Single Photon detector</td>
<td>Fri-O1-04</td>
</tr>
<tr>
<td>masahiro ukibe</td>
<td>AIST</td>
<td>Superconducting-Tunnel-Junction array detector for characteristic X-ray of lithium</td>
<td>Fri-O1-05</td>
</tr>
<tr>
<td>BIN WEI</td>
<td>Tsinghua University, Beijing, 100084, China</td>
<td>Development of HTS Wide-band Bandpass Filters in Ku-band and Low-band</td>
<td>Fri-O1-06</td>
</tr>
<tr>
<td>Liang Sun</td>
<td>Institute of Physics, Chinese Academy of Sciences</td>
<td>Applications of high temperature superconducting (HTS) filters and subsystems in China</td>
<td>Fri-O1-07</td>
</tr>
<tr>
<td>Fri-O2</td>
<td>Fri-O2-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emma Mitchell</td>
<td>CSIRO</td>
<td>Effect of array geometry on SQIF sensitivity</td>
<td>Fri-O2-02</td>
</tr>
<tr>
<td>Ronny Stolz</td>
<td>tba</td>
<td></td>
<td>Fri-O2-01</td>
</tr>
<tr>
<td>Victor Kornev</td>
<td>Moscow State University</td>
<td>Bi-SQUID tradeoff analysis</td>
<td>Fri-O2-03</td>
</tr>
<tr>
<td>Ruben van Staden</td>
<td>Stellenbosch University</td>
<td>SQIF Circuit Simulator</td>
<td>Fri-O2-04</td>
</tr>
<tr>
<td>Colin Pegrum</td>
<td>University of Strathclyde</td>
<td>A full inductive extraction model and Josephson simulation of small SQIFs and arrays</td>
<td>Fri-O2-05</td>
</tr>
<tr>
<td>NIKHIL KUMAR</td>
<td>IIT KANPUR</td>
<td>Controlling Hysteresis in Superconducting Weak Links and Nano-Superconducting Quantum Interference Devices</td>
<td>Fri-O2-06</td>
</tr>
</tbody>
</table>