

Achieving Al-driven value creation

Jake An

AI, Cyber, Modelling and Simulation for SME growth Symposium May 2022

Jake An, PhD (Marketing), UNSW Sydney

Two Cases of Achieving Al-driven Value Creation

Enhancing customer experience and firm revenue via Al-driven

1. Recommender system (with Dr. Lina Yao, Dr. Shuai Zhang, UNSW Sydney)

2. Call centre analytics (with Prof. Oded Netzer, Shin Oblander, Columbia Business School)

1. Al-Driven Recommender System - Raiz Rewards

No. of Raiz Rewards Partners

The Challenge

With over 200+ brands to choose from, which brands should Raiz recommend to whom?

5

Objective

To develop a state-of-the-art machine learning recommender system that recommends brands and cash rewards to customers based on their transaction data.

Research Context

Recommending the "right" product to the "right" customer is at the heart of marketing, satisfying the unique needs of individual customers.

Two main approaches for recommender systems:

- 1. "Customers who have bought this product also bought..."
- 2. "This product is most frequently purchased with..."

Combine both user-based and item-based collaborative filtering algorithms by constructing two parallel neural networks of which the predictions from each neural network are weighted, then summed up for final prediction.

2. Al-Driven Call Centre Analytics

Customer service call centres: important but understudied

Consider the **sentiment** (emotional valence) of the customer and service agent during a call

Can speaker sentiment, and dynamics thereof, tell us about customer satisfaction and retention? A: From what I can see now it's closed. And you got the confirmation email right? Um, but yeah, I'm sorry.

C: Okay, well, anyway, thanks for your help.

A: There's nothing else we can do at ______ this time. Um, thanks for your time. C: Alright.

Emotionality is strongly predictive of customer behavior (Rocklage et al. 2021)

Agent word choice affects customer satisfaction (Packard et al. 2018; Li et al. 2020; Packard and Berger 2021)

งแทน แก่ องกางอาจสแบก

Sentiment dynamics and CSAT

Sentiment dynamics and Churn

FUNCTIONAL FACTOR MODEL: INTUITION

- We want to summarize the **trajectory** of a conversation into interpretable components
- Each function is a **prototypical pattern** of how sentiment may evolve during a conversation
- e.g., consider factorizing agent sentiment into a mixture of 3 functions:

FUNCTIONAL FACTOR MODEL: INTUITION

- We want to summarize the **trajectory** of a conversation into interpretable components
- Each function is a **prototypical pattern** of how sentiment may evolve during a conversation
- e.g., consider factorizing agent sentiment into a mixture of 3 functions:

0% 25% 50% 75% 100%0% 25% 50% 75% 100% Point in Conversation

RESULTS: CSAT AND CHURN

Agent positivity good for satisfaction, but not a deteriorating trajectory

Overall customer sentiment not diagnostic, but the **presence of an upward trajectory** is

Some evidence of churn effects

Variable	CSAT	Churn
Agent avg. sent. (α_i^A)	1.06 (0.51)*	-0.261 (0.120)*
A1: Pleasantries (ϕ_{i1}^A)	0.07 (0.14)	-0.024 (0.024)
A2: Deterioration (ϕ_{i2}^A)	-0.38 (0.14)**	-0.024 (0.032)
A3: Troubleshooting (ϕ_{i3}^A)	-0.06 (0.13)	-0.025 (0.028)
A4: Apologies (ϕ_{i4}^A)	0.13 (0.12)	0.014 (0.026)
Customer avg. sent. (α_i^c)	• 0.11 (0.30)	0.049 (0.064)
C1: Improvement (ϕ_{i1}^{C})	• 0.28 (0.14)*	-0.001 (0.028)
C2: Small talk (ϕ_{i2}^{C})	-0.10 (0.12)	-0.017 (0.032)
C3: Goodbyes (ϕ_{i3}^{C})	-0.05 (0.11)	0.041 (0.030)
C4: Troubleshooting (ϕ_{i4}^{C})	0.07 (0.11)	-0.016 (0.029)

** : p < 0.01, * : p < 0.05, · : p < 0.1. SEs are heteroskedasticity robust. Regressions include LDA topic weights as controls

UTS \$

LET'S COLLABORATE TO ACHIEVE AI-DRIVEN VALUE CO-CREATION

Jake.an@uts.edu.au https://profiles.uts.edu.au/Jake.An https://www.linkedin.com/in/jakean/

