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Complexities of working with non-model organisms
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Aquaculture is the farming of aquatic animals and plants for commercial food production and has become the fastest
growing food production sector in the last 30 years. Enhanced growth, immunity, and resilience are highly sought-after
phenotypic traits in aqguaculture. Omics approaches are powerful tools to unravel the effects that environmental stimuli
exert upon aquaculture organisms and the relevance of this in growth immunity and resilience. omics technologies in
aquaculture can enable manufacturing of advanced diets that provide specific nutrients intended to attain enhanced
growth, immunity, resilience leading to increase production yield while ensuring environmental sustainability and
promoting animal welfare and social license

Prawn nutrition - proteomics & metabolomics Climate change - Salmon heat stress in Tasmania

Prawn hepa.topancre.as and haemolymph were analysed by pro’Feomics and Fish cannot regulate body temperature®. The salmon industry in Australia has
metabolomics following one week feeding. Prawns were fed a fishmeal control been affected by summer heatwaves where affected fish experienced reduced
diet and a diet supplemented with krillmeal. A third group of prawns was feed intake, impaired metabolism, and flesh decolouration?.

maintain in fasting conditions for seven days.

. . , Targeted proteomics — heat stress markers in salmon liver
From prawn to fruit fly — Information loss. Gene ontology analysis

A
Information loss

Atlantic salmon were subjected to temperature increase and liver was
monitored for heat stress markers using targeted proteomics.
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Figure 1: A, Schematic representation of information loss in Process B
proteomics workflow. Entrez gene ID search carried out in
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Figure 2: Metabolomics analysis of haemolymph and joint-pathway analysis in hepatopancreas and haemolymph of shrimp
Pena_eus monodon ur_lder d_|ffer§nt_f_eed|ng_reglmes. A, metabolite class_es W'.th dlﬁerent!al expression in hae_molymph. Figure 3: Monitoring heat stress markers in liver of salmon subjected to heat stress. A, experimental temperature ramp.
Proteins and metabolites with significant high abundance were used to identify metabolic pathway perturbations. B, . e . . . iy : o
: e . ) ) S ) : B, transitions for ferritin peptide. C, experimental mass spectral evidence for ferritin peptide. D, principal component
pathways identified in shrimp fed KM compared to FM diet. C, pathways identified in FS shrimp compared to FM diet. All vsis of total tei _ . din individual | dt | s f i £ <l d at
pathways shown here were significantly upregulated (<0.05). Scale and circle colour intensity indicate the level of ania ysIs 0 cla protein vz.arlance observed in indiviaua sar'np.e's comparedto poo sam.p €5 'ror'n IVEr of Salmon reared a
significance of -log(p-value). Circle size indicates level of pathway impact. 15°Cand 20 °C to determine the effects of heat stress. E, significant abundance of serpinH1 in liver of salmon reared at
20°C compared to a control group (15°C). F, validated markers for heat stress.
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