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Apicomplexan infections such as giardiasis and cryptosporidiosis negatively affect a considerable number
of human and commercial livestock. Such infectious events shows impact at various levels. To understand
these biological changes, here we conducted we utilised integrated 16S rRNA genomics-metabolomics,
and proteomics-metabolomics approaches on a C57BL/6J mouse model during giardiasis, with respect to
cryptosporidiosis and Uropathogenic E. coli (UPEC) infection
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 Host-parasite biochemical interaction during giardiasis with respect to
cryptosporidiosis and UPEC were assessed using C57BL/6J, BALB/c and
Swiss mice (n = 3).
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* Microbial, protein and metabolic extractions from gut
sections(Duodenum, jejunum, ileum, cecum, colon and faecal samples),
blood serum and liver were conducted.
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* V3 and V4 regions of 16S rRNA amplified and sequenced on Illumina
MiSeq platform. The data was analysed using QIIME2 Pipeline
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Results

Mouse strain selection

115 - .B--Balb/C —A— C5TBL/6] —®— Swiss 1®) .. BALB/C —&—C57BL/6] —@— Swiss Figure 4: The heatmap represents Log2Fold change-based relative upregulation (red) and downregulation (blue) of
' individual pathways in the mice with infected gut with respect to the uninfected mice.
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Proteome-metabolome analyses indicated 12 and 16 key pathways
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Days post infection (dp) Days post infection (dp) significantly altered throughout gut and liver, respectively, during
Figure 1: Growth of (A) Mice during the period of infection and (B) G. lamblia count during the period of infection. On 10 gla rdiasis with respect to other infections.
— 11 dpi, the G. lamblia cyst count showed a second peak before stabilising. Based on the outputs of both mice weights,
G. lamblia cyst count and response to the infection, C57BL/6J strain was selected, with the follow-up main study e Metabolomics-16S rRNA genetics integration indicated the populations of

shortened to 10 dpi.
tened to 10 dp 3 bacterial families of Autopobiaceae (Up), Desulfovibrionaceae (Up) and

Gut and extra-gut metabolism: Multi-omics Integration Akkermanasiaceae (Down) to be most significantly affected across the
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ot S a3 T e small intestine and liver, indicating towards an activation of redox
Figure 2: The spread of bacterial species which showed the most significant changes during giardiasis with respect to pathway, as a stress response mechanism.
eukaryotic (cryptosporidiosis) and prokaryotic (UPEC) infections with significance of p <0.01 (***) and 0.05 (**),
respectively. e QOur observations indicate towards the capability of multiomics
s s s Figure 3+ Logyormalised expression  of integration to ascertain a comprehensive understanding of host-parasite
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, _ _ precision medicine for gut infections.
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