
Figure 1: Study pipeline. Plasma samples were collected and
analysed by clinical biochemistry (blue arrows) and NMR (red
arrows). NMR spectra were acquired on a 900 MHz 1H-NMR
spectrometer, processed in TopSpin, and aligned with the
MATLAB program icoshift [3]. Processed spectra were data-
reduced to consecutive integral regions of equal width (0.001
ppm) prior to multivariate statistical analysis in SIMCA-P+ 12.0
(Umetrics AB, Sweden). Metabolites were identified using a
combination of Chenomx NMR Suite (v 8.3), Human Metabolome
and Bovine Metabolome databases. This was used in
combination with multivariate statistics data from the clinical
biochemistry analyses to characterise metabolic pathways with
MetaboAnalyst 2.0 [4] and KEGG.
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Background

Results and discussion

• Cattle experiencing a moderate heat load are in

negative energy balance, similar to those

experiencing feed restriction

• Glucose-sparing mechanisms differ between both

groups as the heat stressed animal attempts to

reduce endogenous heat

• Homeorhesis is still occurring during recovery as

the heat stressed animal attempts to return to its

pre-challenge state

• Though metabolic perturbations occur in cattle

experiencing a moderate heat load, the subtleties

of change suggest that cattle can be resilient to this

level of stress. A higher heat load challenge (i.e.,

severe heat stress) may produce a more

pronounced metabolic response.

Conclusions and future work

Figure 2: Loadings plots of multivariate OPLS analyses of pairwise comparisons between treatments and stages, per Key (orange box).
Coloured 1D plots correspond to NMR data (red) and 2D plots correspond to the clinical biochemistry data (blue). Both plots are also
annotated with the figures of merit of the respective OPLS models. The loadings plots show levels of metabolites and clinical biochemistry
parameters increasing or decreasing depending on the treatment. (a) OPLS loadings between the pre-challenge and challenge stages of
the feed-restricted group, clinical data only; (b) OPLS loadings between the challenge and recovery stages of the feed-restricted group,
clinical data only; (c) OPLS loadings between the feed restricted and heat stress groups during challenge; (d) OPLS loadings between the
pre-challenge and challenge stages of the heat stress group; (e) OPLS loadings between the challenge and recovery stages of the heat
stress group; (f) OPLS loadings between the pre-challenge and recovery stages of the heat stress group.
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• Feed-restricted cattle tend towards negative

energy balance (NEBAL), indicated by alterations

in carbohydrate and lipid metabolism

• Elevated triglycerides during feed restriction

suggests mobilisation from adipose stores to

compensate for lower dietary glucose (fig 2a) [5]

• Microbial populations affected by reduced feed

intake are stabilised, as indicated by reduced urea

during feed restriction recovery (fig 2b) [6]

• Similar responses are seen during heat stress (fig

2d-e) – i.e., cattle in NEBAL

• When comparing both groups during challenge

(fig 2c), fatty acid mobilisation is shown to be

unique to feed restriction

• Differences in glucose sparing mechanisms

during both challenges as indicated by

increased glucose in heat stress but

decreased in feed restriction (NMR), while the

animal attempts to reduce endogenous heat

• Cattle recovering from heat stress did not fully

return to the pre-challenge state (fig 2f), indicating

homeorhetic mechanisms are still occurring;

muscle rebuild (creatinine) and rumen function

are still returning to pre-challenge levels.
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• An ongoing issue in the agriculture industry,

heat stress occurs when an organism's total heat

load exceeds its capacity for heat dissipation [1]

and leads to reduced feed intake [2]

• Maintaining optimum livestock health is critical in

maximizing agricultural profitability and efficiency

• It is important to understand metabolic

pathways affected by heat stress to counteract

its negative effects and thus help maintain

cattle weight and growth

• We analysed a case of acute heat stress in Black

Angus steers (Bos taurus) conducted in three

stages (pre-challenge, challenge, recovery) in

temperature-controlled climate chambers (Qld

Animal Science Precinct, Gatton)

• Two groups: moderate heat stress (Ta max

35°C) and feed restriction (Ta max 20°C)

• Feed-restricted group (FR) mimicked feed

patterns of the heat stress group (HS) during

challenge

• We used data from 1H NMR spectroscopy to run

comparative multivariate OPLS analyses which

we used to identify metabolites and, when

combined with clinical biochemistry data, infer

metabolic pathways affected by both moderate

heat stress and feed restriction.
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